HOWTO: Bootable Linux Software RAID-1
Array

Written by Chet McNeill. <chet at somedec dot com>

Version: June 24, 2005

Contents

1

2

Requirements 3
Introduction 3
Assumptions 3
Creating RAID device 3
4.1 Partitioning and creating filesystems 4
4.2 Building your kernel oo oo 5
Installing packages 5
Installing the boot loader 5
6.1 Rebooting your system 5
6.2 Installinggrubo 6
Testing 7
7.1 Initial boot 7
7.2 Software 8
7.3 Hardware 9

7.3.1 Restoring your RAID-1 array 10
Counter-indications 10

1 Requirements
e Linux kernel >= 2.6.9
e mdadm

e grub

Software RAID automount degraded mode kernel patch.
This may be obtained from:
http://somedec.com/downloads/md-boot-degraded-2.6.12.1.diff

2 Introduction

System administrators want the most reliable system that can possibly be had.
In many cases hardware RAID controllers are either too expensive or simply
unavailablef or a particular system.

There are many HOWTOs available on the Internet that describe several dif-
ferent schemes for utilizing Linux software RAID to provide mirroring of boot,
root, and even other partitions. However, none of these have ever been robust
enough to provide uninterrupted service under a great variety of circumstances.
Most also were created using the 2.4.x series of Linux kernels, not taking advan-
tage of new features available since the release of 2.6. For instance, most (if not
all) proposed solutions involve mirroring partitions and treat a single mirrored
partition as a usable standard-mode partition during the boot process.

Linux kernels in the 2.6.x generation have a new feature allowing the use of
entire devices as components of a partitionable RAID-1 array. If one uses this
new feature, then all data on the drive is mirrored at all times.

So the goal of this HOWTO is to put the partition table, and boot, root,
and swap partitions on bootable RAID-1 mirror device. RAID device(s) should
be assembled by the kernel before any filesystem is mounted.

3 Assumptions

o We will be using Gentoo installation as an example.
e We will assume two IDE drives, /dev/hda and /dev/hdb.

e For illustrative purposes we will also create other partitions using LVM2
on the RAID-1 array, providing a fully mirrored system.

4 Creating RAID device

1. Boot from Linux installation CD.

2. Load appropriate module

3.

modprobe dm_mod raidil
Create RAID-1 array of two drives:
mdadm -C -ap<#> -11 /dev/md_d0 /dev/hda /dev/hdb

Replace the <#> with the required number of partitions. Omit the num-
ber if the standard 4 is being used.

I suggest using the standard four partitions.

Partitioning and creating filesystems

. Partition the new RAID-1 array.

fdisk /dev/md_d0

I suggest using something like the following, particularly if you’re only
using two drives.

(a
(b
(c
(d

Partition 1: /boot (128MB, type 83)
Partition 2: / (1GB, type 83)

Partition 3: swap (2 times physical memory size, type 82)

NN NN

Partition 4: LVM (Remainder of array, type 8e)
Create file systems

mke2fs /dev/md_dOp1
mkreiserfs /dev/md_dOp2
mkswap /dev/md_dOp3
swapon /dev/md_d0p3
pvcreate /dev/md_dOp4
vgcreate vg /dev/md_dOp4
lvcreate -L 8G -n usr vg
lvcreate ...

H oH HF HHHHH

Mount and use filesystems as normal.

mount /dev/md_dOp2 /mnt/gentoo

mount /dev/md_dOpl /mnt/gentoo/boot
mkswap /dev/md_dOp3; swapon /dev/md_dOp3
vgchange -ay vg; mount /dev/vg/usr /mnt/gentoo/usr; ...

H H H HH

mkdir /mnt/gentoo/boot /mnt/gentoo/proc /mnt/gentoo/usr ...

4.2 Building your kernel

Of course, with Gentoo Linux you must build your own kernel. If you are
not using Gentoo, you may be required to do the same. If you do, check the
documentation for your distribution for details.

The kernel must meet these basic requirements:

e Make sure the kernel has RAID-1 (and LVM if using it) built in. You
cannot use an initrd and modules. The kernel will only auto-mount raid
arrays if the md module is built in. Both of these options are under Device
Drivers->Multi-Device Support (RAID and LVM).

e The kernel must have the md-boot-degraded patch installed. This is defi-
nitely not part of any kernel through 2.6.12.1. The patch can be obtained
from somedec.com (see above under Requirements for the URL).

To patch your kernel, obtain the patch file and follow these steps:

cd /usr/src/linux
patch -pl < /path/to/patch/md-degraded-boot-2.6.12.1.diff

5 Installing packages

When installing packages, make sure that you install lvm2, mdadm (not raid-
tools), and grub.

Since you are using a 2.6 kernel, you will be using lvm version 2. So you
need to make sure that the proper lvim tools package is installed.

Most users who are familiar with Linux software RAID are also familiar with
raidtools. raidstart, raidstop, radhotadd, etc. are a time-honored tradition.
However, the mdadm tool is a single that is much more powerful. Get used to
it — you will love it.

In my testing, Lilo absolutely refused to be installed on a RAID-1 array.
GRUB is the [only] way to go here.

6 Installing the boot loader

In testing I have found that it is important to reboot using the installation CD.
You may not be required to do so, but proceed at your own risk. Be aware that
grub will not complain and no errors will be reported. However, the resulting
array simply will not boot. This condition is not fatal, and simply rebooting off
of the install CD and re-installing grub will do the trick.

6.1 Rebooting your system

Be aware, that if you use LVM on a RAID-1 array you must do one of the
following when booting from the installation CD:

e Upon reboot from the cdrom, add a kernel boot parameter “md=d0,hda,hdb”
(replace the drives with values appropriate to your system); or

e After boot, make sure that dm mod did not auto-load on boot. If an
lsmod shows dm_mod, then unload it:

vgchange -an vg; rmmod dm_mirror dm_mod

The reason for the latter is that the init system on the install CD may scan
for and find the LVM partition type and auto-load the LVM module, activating
your volume group. Unfortunately, the LVM module just sees two drives with
identical volume groups and simply ignores one of them. If LVM is not shut
down, you will not be able to start your RAID array!

After booting (and possibly cleaning up), start your RAID array and volume
group:

modprobe raidl

mdadm -A -ap /dev/md_d0 /dev/hda /dev/hdb
modprobe dm_mod

vgscan; vgchange -ay vg

Now you can remount all of the volumes and continue with your installation.

6.2 Installing grub
After chrooting into the /mnt/gentoo, install grub:

grub

grub> root (hd0,0)

grub> install /boot/grub/stagel (hd0) /boot/grub/stage2 p /boot/grub/menu.lst
grub> quit

grub

grub> root (hd1,0)

grub> install /boot/grub/stagel (hdl) /boot/grub/stage2 p /boot/grub/menu.lst
grub> quit

Notice that there are two distinct grub sessions. In testing I have found that
you must install grub in two distinct steps.

Inside of your /boot/grub/menu.lst file, your boot configuration should look
like this:

timeout 3

By default, boot the first entry.

default 0

For booting GNU/Linux title Gentoo

root (hd0,0)

kernel /bzImage-2.6.12 root=/dev/md_dOp2 ro md=d0,hda,hdb

Once that is done, you should be able to unmount all drives, reboot, and remove
the installation CD. Congratulations!

7 Testing

Now you should test the system to make sure that all is working as expected.

7.1 Imitial boot

After removing the installation CD and rebooting, grub should appear and
happily boot your system. Of course, if you encounter a kernel panic, or system
services start failing on boot you know there is a problem. Troubleshoot your
initial install to get a working system.

Note that if grub reboots when loading itself, or if it freezes on phase 2,
this is symptomatic of the installation of grub before rebooting (see section 6.2
above). Reboot from the installation CD, remount all devices, and re-install

grub.

After booting up, scan the kernel output for status of your raid array(s):

dmesg | grep md

You should see something like this:

md:
md:
md:
md:
md:
md:
md:
md:
md:
md:
md:
md:
md:
md:

Will configure md0 (super-block) from /dev/hda,/dev/hdb, below.
raid0 personality registered as nr 2
raidl personality registered as nr 3
raidb5 personality registered as nr 4
md driver 0.90.1 MAX_MD_DEVS=256, MD_SB_DISKS=27
Autodetecting RAID arrays.
autorun ...
. autorun DONE.
Loading md_d0: /dev/hda,/dev/hdb
bind<hda>
bind<hdb>
kicking non-fresh hda from array!
unbind<hda>
export_rdev(hda)

raidl: raid set md_dO active with 1 out of 2 mirrors
md_dO: pl p2 p3 p4
md_dO: pl p2 p3 p4

Also, check the current run-time status of the raid module:

cat /proc/mdstat

You should receive output similar to the following:

Personalities : [raid0] [raidil] [raid5]
md_dO : active raidl hda[1] hdb[2]

39082560 blocks [2/1] [UU]

unused devices: <none>

The key words to look for are ’active’ and the '[UU]” section. Your array may
report itself as ‘reconstructing’ if it has not fully synchronized yet.

If you see an underscore in place of one of the "U’s then one of your drives is
not actively part of the array. See section 7.3.1 below on how to add the missing
drive.

7.2 Software

The first and easiest way to test your array is to do it via software. After making
sure that you have a working system, you should reboot. When grub’s menu
appears, hit e’ to edit the command line. Move down to the kernel line and
hit ’e’ again to edit the kernel command line parameters. Change the text that
reads 'md=d0,hda,hdb’ to ‘'md=d0,hdz,hdb’ (replacing your primary, or boot,
drive with a non-existant drive designation). After hitting Enter to complete
the editing session, press the 'b’ key to continue booting.

At this point the raid module built into the kernel will try to assemble your
RAID-1 array using a non-existant drive and your secondary, or mirror, drive.

If the kernel panics because it can not mount the root drive, then the cause
is almost certainly that your kernel is missing the md-degraded-boot patch (see
section 4.2 above).

If the system boots and everything looks normal then you are well on your
way!

Now, if you check your kernel logs (dmesg | grep md) you should see some-
thing similar to:

md: Will configure md0 (super-block) from /dev/hdz,/dev/hdb, below.
md: raid0 personality registered as nr 2

md: raidl personality registered as nr 3

md: raidb personality registered as nr 4

md: md driver 0.90.1 MAX_MD_DEVS=256, MD_SB_DISKS=27
md: Autodetecting RAID arrays.

md: autorun ...

md: ... autorun DONE.

md: Skipping unknown device name: hdz

md: Loading md_d0: /dev/hdz,/dev/hdb

md: bind<hdb>

raidl: raid set md_dO active with 1 out of 2 mirrors
md_dO: pl p2 p3 p4

md_d0: pl p2 p3 p4

Notice that it skips the unknown device. An unpatched kernel will notice the
unknown device and abort at that point.

Of course, checking the run-time status of the RAID module will show the
array running in degraded mode using only one hard drive:

Personalities : [raid0] [raidil] [raid5]

md_dO0 : active raidl hdb[1]
39082560 blocks [2/1] [_U]
unused devices: <none>

If you wish to add the missing device to the array and start a resynchronization,
issue the mdadm command:

mdadm --manage --add /dev/md_d0 /dev/hda

If you are going to continue testing with the hardware section below, then you
probably do not want to start the resync yet.

7.3 Hardware

Now comes the real test. Shut down your system after trying the software test
above. Now uplug the primary drive. Now we will force the machine to load
grub from the second hard drive, load the kernel, and reconstruct the degraded
RAID-1 array.

Power up the machine. Both grub and the kernel should load without any
noticable difference! In fact, the system should boot completely normally. The
only differences will be a slight glitch in the kernel logs similar to the software
test above. Checking the kernel logs for RAID references (dmesg | grep md)
should return something like:

md: Will configure md0 (super-block) from /dev/hdz,/dev/hdb, below.
md: raid0 personality registered as nr 2

md: raidl personality registered as nr 3

md: raidb personality registered as nr 4

md: md driver 0.90.1 MAX_MD_DEVS=256, MD_SB_DISKS=27
md: Autodetecting RAID arrays.

md: autorun ...

md: ... autorun DONE.

md: Skipping unknown device name: hdz

md: Loading md_dO: /dev/hdz,/dev/hdb

md: bind<hdb>

raidl: raid set md_dO active with 1 out of 2 mirrors
md_dO: pl p2 p3 p4

md_dO: pl p2 p3 p4

The run-time status will be identical to the software test above:

Personalities : [raid0] [raidl] [raid5]
md_d0 : active raidl hdb[1]

39082560 blocks [2/1] [_U]
unused devices: <none>

7.3.1 Restoring your RAID-1 array

After shutting down and re-connecting your primary hard drive, reboot your
system. You might think that the RAID array will now begin resynchronization.
You might, then, be surprised that it, in fact, does not.

Checking the run-time status of the RAID module shows:

Personalities : [raidO] [raidil] [raid5]
md_dO0 : active raidl hdb[1]

39082560 blocks [2/1] [_U]
unused devices: <none>

You must add the missing device back into the array using the following com-
mand:

mdadm --manage --add /dev/md_d0 /dev/hda

Voila! Your array is now synchronizing.

8 Counter-indications
The only drawbacks that are immediately obvious to this specific solution are:

e A kernel patch & build are required. While Gentoo users will likely not
have any problem here, users of other distros may lack kernel building
experience.

e Replacing a failed hard drive means that the RAID-1 array will suck up
the entire drive. For example, if one were to mirror two 40GB drives, and
replace a failed drive later with an 80GB drive, 40GB on the new drive is
completely unusable. When using RAID-1 partitions, the partition table
from the surviving drive can be duplicated on the replacement drive, and
whatever space is remaining can still be partitioned and used. On the
other hand, with this method no partitioning of the replacement drive is
required! The partition information is part of the RAID array and will
automatically be copied to the new drive during synchronization.

10

